News & Events


Solar Powered, Electrochemical, Wastewater Treatment System


Cody Finke, Environmental Science and Engineering graduate student, and Justin Jasper, Resnick Sustainability Institute Prize Postdoctoral Scholar, are the runner ups for the Dow Resnick Sustainability Innovation Student Challenge Award (SISCA) at Caltech. They have been working Professor Michael Hoffmann to enhance a modular, solar powered, electrochemical, on-site wastewater treatment system created by their group for toilets in the developing and developed world. With an operating cost of less than 5 US cents per day, this wastewater treatment technology meets benchmarks for affordability in the developing world. It also has the potential to protect human health and ecosystem well-being in communities most at risk to disease and resource-loss through environmental pollution. [Resnick Institute story]

Tags: honors energy research highlights health ESE Michael Hoffmann Cody Finke Justin Jasper

Solar-Powered Sanitation System


Michael R Hoffmann, James Irvine Professor of Environmental Science, has received a $400,000 grant from the Bill & Melinda Gates Foundation to build a solar-powered portable toilet that could help solve a major health problem in developing countries. [Caltech Press Release]

Tags: research highlights health ESE Michael Hoffmann

Paul Wennberg and John Seinfeld Show How Organic Carbon Compounds Emitted by Trees Affect Air Quality


Paul Wennberg, the R. Stanton Avery Professor of Atmospheric Chemistry and Environmental Science and Engineering and director of the Ronald and Maxine Linde Center for Global Environmental Science, and John Seinfeld, the Louis E. Nohl Professor and professor of chemical engineering, have shown that biogenic emissions—organic carbon compounds given off by plants and trees— affect air quality. Wennberg states that, "if you mix emissions from the city with emissions from plants, they interact to alter the chemistry of the atmosphere." Seinfeld adds, "particles in the atmosphere have been shown to impact human health, as they are small enough to penetrate deep into the lungs of people. Also, aerosols impact Earth's climate through the scattering and absorption of solar radiation and through serving as the nuclei on which clouds form. So it is important to know where particles come from." [Caltech Press Release]

Tags: research highlights health ESE Paul Wennberg John Seinfeld

Chemistry of Airborne Particulate—Lung Interactions Revealed by Agustin Colussi and Colleagues


Agustin J. Colussi, senior research associate in environmental science and engineering, and colleagues have found that airborne particulates impair the lungs' naturaldefenses against ozone. Their research focused on what happens when air meets the thin layer of antioxidant-rich fluid that covers our lungs, protecting them from ozone, an air pollutant that pervades major cities. "We found new chemistry at the interfaces separating gases from liquids using a technique that continuously monitors the composition of these interfaces," Colussi says. Under normal physiological conditions, ascorbic acid instantly scavenges ozone, generating innocuous byproducts. However, the researchers discovered that when the fluid is acidic, a pathological condition found in asthmatics, ascorbic acid instead reacts with ozone to form potentially harmful compounds called ozonides.

Tags: research highlights health ESE Agustin Colussi